已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减. (1)求a的值; (2)记g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.

问题描述:

已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
(1)求a的值;
(2)记g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.

(1)f′(x)=4x3-12x2+2ax,因为f(x)在[0,1]上递增,在[1,2]上递减,所以x=1是f(x)的极值点,所以f′(1)=0,即4×13-12×12+2a×1=0.解得a=4,经检验满足题意,所以a=4.(2)由f(x)=g(x)可得x2(x2-...