先用定义判断函数f(x)=1+x-1分之一在区间【2,6】上的单调性,在求函数f(x)在区间【2,6】上的最大值和最小值
问题描述:
先用定义判断函数f(x)=1+x-1分之一在区间【2,6】上的单调性,在求函数f(x)在区间【2,6】上的最大值和最小值
答
设x1,x2是原函数的两个自变量的值,且x1
因为x1
所以x1-1>0,x2-1>0,
所以(x1-1)(x2-1)分之x1-x2>0,
所以原函数在区间【2,6】上为减函数
最大值为f(2)=2,最小值为f(6)=6/5