已知:平行四边形ABCD中,点E是AB的中点,在直线AD上截取AF=2FD,EF交AC于G,则AG/AC= _ .

问题描述:

已知:平行四边形ABCD中,点E是AB的中点,在直线AD上截取AF=2FD,EF交AC于G,则

AG
AC
= ___ .

(1)点F在线段AD上时,设EF与CD的延长线交于H,
∵AB∥CD,
∴△EAF∽△HDF,
∴HD:AE=DF:AF=1:2,
即HD=

1
2
AE,
∵AB∥CD,
∴△CHG∽△AEG,
∴AG:CG=AE:CH
∵AB=CD=2AE,
∴CH=CD+DH=2AE+
1
2
AE=
5
2
AE,
∴AG:CG=2:5,
∴AG:(AG+CG)=2:(2+5),
即AG:AC=2:7;
(2)点F在线段AD的延长线上时,设EF与CD交于H,
∵AB∥CD,
∴△EAF∽△HDF,
∴HD:AE=DF:AF=1:2,
即HD=
1
2
AE,
∵AB∥CD,
∴△CHG∽△AEG,
∴AG:CG=AE:CH
∵AB=CD=2AE,
∴CH=CD-DH=2AE-
1
2
AE=
3
2
AE,
∴AG:CG=2:3,
∴AG:(AG+CG)=2:(2+3),
即AG:AC=2:5.
故答案为:
2
5
2
7