求函数y=2cosx(sinx+cosx)的单调递增区间急

问题描述:

求函数y=2cosx(sinx+cosx)的单调递增区间

y=2cosx(sinx+cosx)=2sinxcosx+2cosxcosx=sin2x+1+cos2x
=1+(sin2x+cos2x)=1+√2sin(2x+π/4)
=1+√2sin2(x+π/8)
∴单调递增区间(-3π/8+kπ,π/8+kπ)

y
=2cosxsinx+2cosx*cosx
=sin2x+(2cosx*cosx-1)+1
=sin2x+cos2x+1
=根号2*sin(2x+45)+1
=>递增区间为
-pi/2+2pi*N=>-3pi/4+2pi*N=>-3pi/8+pi*N(N为整数)