已知函数f(x)=x^1/2,g(x)=alnx,两曲线相交,且在交点处有共同切线,求a的值和该切线方程
问题描述:
已知函数f(x)=x^1/2,g(x)=alnx,两曲线相交,且在交点处有共同切线,求a的值和该切线方程
答
1.因为两曲线在交点处有相同切线,所以两函数在交点处的导数相等
f’(x)=1/2根号下x ,g’(x)=a/x
令f’(x)=g’(x)得 a=(根号下x)/2,代入原函数,令f(x)=g(x)解得x=e^2
所以交点坐标为(e^2,e)
该点导数即斜率为1/(2e)
切线:y-e=1/(2e)·(x-e^2)
即 y=1/(2e)·x+e/2