如图在正方形ABCD中G是BC上任意一点,E.F是AG上的两点若AF=BF+EF∠1=∠2请判断DE和BF的位置关系

问题描述:

如图在正方形ABCD中G是BC上任意一点,E.F是AG上的两点若AF=BF+EF∠1=∠2请判断DE和BF的位置关系
看清了题再来 :判断DE和BF的位置关系

DE//BF.
证明:
∵四边形ABCD是正方形,
∴AB=AD,∠BAF+∠DAE=90°
∵AF=AE+EF,又AF=BF+EF
∴AE=BF
∵∠ABF=∠DAE
∴△ABF≌△DAE(SAS)
∴∠AFB=∠DEA,∠BAF=∠ADE
∴∠ADE+∠DAE=90°
∴∠AED=∠BFA=90°
∴DE//BF