如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠...
答案解析:(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF.
(2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD.
(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).
再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE.
考试点:等腰三角形的判定;全等三角形的判定与性质;勾股定理;正方形的判定.
知识点:本题是一道几何综合题,内容涉及三角形的全等、图形的旋转以及勾股定理的应用,重点考查学生的数学学习能力,是一道好题.本题的设计由浅入深,循序渐进,考虑到学生的个体差异.从阅卷的情况看,本题的得分在4-8分的学生居多.前两个小题学生做得较好,第三小题,因为学生不懂得用前面积累的知识经验答题,数学学习能力不强,造成本小题得分率较低.