已知定义在R上的偶函数f(x)满足f(x+2)•f(x)=1对于x∈R恒成立,且f(x)>0,则f(119)=_;

问题描述:

已知定义在R上的偶函数f(x)满足f(x+2)•f(x)=1对于x∈R恒成立,且f(x)>0,则f(119)=______;

f(x+2)=

1
f(x)
,∴f(x+4)=f(x),所以周期T=4,f(119)=f(3).
令x=-1,f(1)•f(-1)=1,∴f(1)=1,f(3)=
1
f(1)
=1

故答案为:1