在数列(an)中a1等于2 ,a(n+1)等于4an-3n+1.证明(an-n)是等比数列;求数列an的前n项和Sn;证明不等...
问题描述:
在数列(an)中a1等于2 ,a(n+1)等于4an-3n+1.证明(an-n)是等比数列;求数列an的前n项和Sn;证明不等...
在数列(an)中a1等于2 ,a(n+1)等于4an-3n+1.证明(an-n)是等比数列;求数列an的前n项和Sn;证明不等式S(n+1)4小于等于Sn对任意n属于N皆成立.
麻烦把几个题都答一下麻烦把几个题都答一下
答
1.变形即为a(n+1)-(n+1)=4(an-n),所以(an-n)是首项为1,公比为4的等比数列.
2.令an-n=bn,则Sbn=(4^n-1)/(4-1),即San-1-2-…-n=(4^n-1)/3,
所以San=(4^n-1)/3+(1+2+…+n)=(4^n-1)/3+n(1+n)/2