在平面直角坐标系中,抛物线经过o(0,0),A(3,负二分之2根号3)三点.
问题描述:
在平面直角坐标系中,抛物线经过o(0,0),A(3,负二分之2根号3)三点.
1.求抛物线的解析式.2.以OA的中点M为圆心,OM长为半径作圆M,在(1)中的抛物线上是否存在这样的点P,过点P作圆M的切线L,且L与X轴的夹角30°,若存在,请求出此时点P的坐标,若不存在,请说明理由.
O(0,0),A(4,0) B(3,负二分之2根号3)
答
依据题意,可以大致画出题目要求的曲线应该是开口向上的抛物线,可以设为y=ax^2+bx,依据题意可以求出方程为多少.在根据题意画出基本的草图,由于要求的 切线必须满足与x轴的夹角为30度,应为圆的半径长为2,过圆心O点,做切线的垂直线,可以发现30度角对应的边正好为圆的半径,其长度为2,而我们知道,直角三角形中,30度角对应的边的长度是斜边的一半,所以斜边为4,而点A(4,0)和点(-2,0)刚好是我们要找的点