已知如图△ABC为等边三角形,D为BC延长线上一点,EC平分∠ACD,且∠ADE=60°,求证:△ADE为等边三角形.
问题描述:
已知如图△ABC为等边三角形,D为BC延长线上一点,EC平分∠ACD,且∠ADE=60°,求证:△ADE为等边三角形.
答
证明:∵△ABC为等边三角形,
∴∠B=∠ACB=60°,AB=AC,
即∠ACD=120°,
∵CE平分∠ACD,
∴∠1=∠2=60°,
在△ABD和△ACE中,
,
AB=AC ∠B=∠1 BD=CE
∴△ABD≌△ACE(SAS),
∴AD=AE,
∵∠DAE=60°,
∴△ADE为等边三角形.