求[(1^4+1/4)(3^4+1/4)(5^4+1/4)……(19^4+1/4)]/[(2^4+1/4)(4^4+1/4)(6^4+1/4)……(20^4+1/4)]

问题描述:

求[(1^4+1/4)(3^4+1/4)(5^4+1/4)……(19^4+1/4)]/[(2^4+1/4)(4^4+1/4)(6^4+1/4)……(20^4+1/4)]
求[(1^4+1/4)(3^4+1/4)(5^4+1/4)……(19^4+1/4)]/[(2^4+1/4)(4^4+1/4)(6^4+1/4)(20^4+1/4)]

a^4+1/4=(a²+1/2)²-a²=(a²+a+1/2)(a²-a+1/2)=[a(a+1)+1/2][a(a-1)+1/2]所以[(1^4+1/4)(3^4+1/4)(5^4+1/4)……(19^4+1/4)]/[(2^4+1/4)(4^4+1/4)(6^4+1/4)……(20^4+1/4)]=[(1*2+1/2)*(1*0+1...