在△ABC中,sin2A-sin2B+sin2C=sinAsinC,试求∠B的大小(2是平方)

问题描述:

在△ABC中,sin2A-sin2B+sin2C=sinAsinC,试求∠B的大小(2是平方)

(sinA)^2-(sinB)^2+(sinC)^2=sinAsinC
sinA/sinC - (sinB)^2/[sinAsinC] + sinC/sinA = 1
a/c - b^2/(ac) + c/a =1
a^2-b^2+c^2= ac
b^2= a^2+c^2 -ac
By cosine rule
-ac = -2accosB
cosB = 1/2
B = π/3