△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=1/2(BC-AC).
问题描述:
△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=
(BC-AC). 1 2
答
延长AD交BC于F,说明AC=CF,DE是△ABF的中位线.∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠BCD,CD是公共边,∠ADC=∠FDC=90°,∴△ADC≌△FDC(ASA)∴AC=CF,AD=FD又∵△ABC中E是AB的中点,∴DE是△ABF的中位线,∴DE=12...