已知函数f(sinx)=cos2x+sinx,求(1)f(cosx) (2)f(sinx)+f(cosx)的最大值与最小值

问题描述:

已知函数f(sinx)=cos2x+sinx,求(1)f(cosx) (2)f(sinx)+f(cosx)的最大值与最小值

(1)
f(cosx)=f[sin(π/2-x)]
=cos2(π/2-x)+sin(π/2-x)
=cos(π-2x)+sin(π/2-x)
=-cos2x+cosx.
(2)
f(sinx)+f(cosx)
=(cos2x+sinx)+(-cos2x+cosx)
=sinx+cosx
=√2[sinx·(√2/2)+cosx·(√2/2)]
=√2(sinx·cos45°+cosx·sin45°)
=√2sin(x+45°),
∴sin(x+45°)=1时,最大值为√2;
sin(x+45°)=-1时,最小值为-√2.