求证:不论x、y取何值,代数式x2+y2+4x-6y+14的值总是正数.

问题描述:

求证:不论x、y取何值,代数式x2+y2+4x-6y+14的值总是正数.

证明:x2+y2+4x-6y+14=x2+4x+4+y2-6y+9+1
=(x+2)2+(y-3)2+1,
∵(x+2)2,≥0,(y-3)2≥0,
∴(x+2)2+(y-3)2+1≥1,
∴不论x、y取何值,代数式x2+y2+4x-6y+14的值总是正数.