如图,梯形ABCD中,AD平行于BC,AB=CD,对角线AC、BD相交于O点,且AC垂直于BD,若AD+BC=4倍根号2,AC的长为多少,面积为多少
问题描述:
如图,梯形ABCD中,AD平行于BC,AB=CD,对角线AC、BD相交于O点,且AC垂直于BD,若AD+BC=4倍根号2,AC的长为多少,面积为多少
答
梯形ABCD中,AD‖BC,AB=CD,∴梯形ABCD是等腰梯形
∴AC=BD
作DE‖AC,则四边形ACED是平行四边形 ∴DE=AC=BD CE=AD
∴BE=AD+BC=4√2
∴BD²+DE²=(4√2)²=32
∴BD=DE=AC=4
∴S(⊿BDE)=8
易证S(梯形ABCD)=S(⊿BDE)=8