有8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘四人(不包括司机)

问题描述:

有8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘四人(不包括司机)
当两辆小汽车再距车站10千米的地方,一辆车出了故障,距检票还有40分钟,小汽车速度为40,步行为4.求最短时间

假设起点是A点,终点是D点,最优送法是:汽车先送一批人(假设为第一批)到C,与此同时另一批人(假设为第二批人)步行前进,当汽车到达C点时,汽车回头来接第二批人,并且相遇与B点,第二批人步行到终点,当两批人同时到达终点应该是最理想的.假设AB\BC\CD距离L1,L2,L3那么

汽车和第二批人相遇于B点时满足(时间相等):

(L1+2*L2)/40=L1/4

L2=4.5L1

第一批人与第二批乘汽车的人同时到达终点:

(2*L2+L3)/40=L3/4

L2=4.5L3

又总距离为10,可以算出

L1=20/13;L2=90/13;L3=20/13;

因此总时间可以用第一批人(或第二批人)花的时间来算:

T=L1/4+(L2+L3)/40=31/52(小时)