高中绝对值不等式求助,abc均为实数a≠b,b≠c,a≠c
问题描述:
高中绝对值不等式求助,abc均为实数a≠b,b≠c,a≠c
求证:3/2≤(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|)
数学人气:993 ℃时间:2019-10-19 15:37:39
优质解答
由绝对值不等式得:
|a+b-2c| ≤ |a-c|+|b-c|,|b+c-2a| ≤ |b-a|+|c-a|,|c+a-2b| ≤ |c-b|+|a-b|.
由a-b,b-c,c-a都不为0,其中至少有两个符号相同.
不妨设a-b与b-c同号,则a-b与c-b反号,|c+a-2b| 因此三个不等号至少有1个是严格的.
相加得|a+b-2c|+|b+c-2a|+|c+a-2b| 由|a-b|+|b-c|+|c-a| > 0,得(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|) 仍由绝对值不等式得:
|a+b-2c|+|b+c-2a| ≥ |3a-3c| = 3|c-a|,|b+c-2a|+|c+a-2b| ≥ 3|a-b|,|c+a-2b|+|a+b-2c| ≥ 3|b-c|.
相加即得2(|a+b-2c|+|b+c-2a|+|c+a-2b|) ≥ 3(|a-b|+|b-c|+|c-a|).
由|a-b|+|b-c|+|c-a| > 0,得(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|) ≥ 3/2.
|a+b-2c| ≤ |a-c|+|b-c|,|b+c-2a| ≤ |b-a|+|c-a|,|c+a-2b| ≤ |c-b|+|a-b|.
由a-b,b-c,c-a都不为0,其中至少有两个符号相同.
不妨设a-b与b-c同号,则a-b与c-b反号,|c+a-2b| 因此三个不等号至少有1个是严格的.
相加得|a+b-2c|+|b+c-2a|+|c+a-2b| 由|a-b|+|b-c|+|c-a| > 0,得(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|) 仍由绝对值不等式得:
|a+b-2c|+|b+c-2a| ≥ |3a-3c| = 3|c-a|,|b+c-2a|+|c+a-2b| ≥ 3|a-b|,|c+a-2b|+|a+b-2c| ≥ 3|b-c|.
相加即得2(|a+b-2c|+|b+c-2a|+|c+a-2b|) ≥ 3(|a-b|+|b-c|+|c-a|).
由|a-b|+|b-c|+|c-a| > 0,得(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|) ≥ 3/2.
我来回答
类似推荐
- 已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
- 已知a,b,c均为非零实数,则集合{x/x=a的绝对值分之a+b分之b的绝对值+c的绝对值分之c+abc分之abc的绝对值
- 已知a、b、c为非零实数,代数式a|a|+b|b|+c|c|+abc|abc|的值所组成的集合为M,则下列判断中正确的是( ) A.0∉M B.-4∉M C.2∈M D.4∈M
- 已知实数abc满足不等式|a|大于等于|b+c|,|b|大于等于|a+c|,|c|大于等于|b+a|,求a+b+c的值?
- 已知a+b+c=0 a b c为非0实数求a\a的绝对值+b\b的绝对值+c\c的绝对值+abc\绝对值abc
答
由绝对值不等式得:
|a+b-2c| ≤ |a-c|+|b-c|,|b+c-2a| ≤ |b-a|+|c-a|,|c+a-2b| ≤ |c-b|+|a-b|.
由a-b,b-c,c-a都不为0,其中至少有两个符号相同.
不妨设a-b与b-c同号,则a-b与c-b反号,|c+a-2b| 因此三个不等号至少有1个是严格的.
相加得|a+b-2c|+|b+c-2a|+|c+a-2b| 由|a-b|+|b-c|+|c-a| > 0,得(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|) 仍由绝对值不等式得:
|a+b-2c|+|b+c-2a| ≥ |3a-3c| = 3|c-a|,|b+c-2a|+|c+a-2b| ≥ 3|a-b|,|c+a-2b|+|a+b-2c| ≥ 3|b-c|.
相加即得2(|a+b-2c|+|b+c-2a|+|c+a-2b|) ≥ 3(|a-b|+|b-c|+|c-a|).
由|a-b|+|b-c|+|c-a| > 0,得(|a+b-2c|+|b+c-2a|+|c+a-2b|)/(|a-b|+|b-c|+|c-a|) ≥ 3/2.