已知二次函数图像在原点,对称轴为y轴,一次函数y=kx+1的图像与二次函数图像交于A,B两点(A在B的左侧),且A的坐标为(-4,4).平行于x轴的直线L过(0,-1)点.

问题描述:

已知二次函数图像在原点,对称轴为y轴,一次函数y=kx+1的图像与二次函数图像交于A,B两点(A在B的左侧),且A的坐标为(-4,4).平行于x轴的直线L过(0,-1)点.
问:⒈求一次函数和二次函数的解析式?⒉判断线段AB为直径的圆与直线L的位置关系,并给出证明.3.把二次函数的图像向右平移两个单位,再向下平移t各单位(t>0),二次函数的图像与x轴交于M,N两点,一次函数图像交y轴于F点,当t为何值时,过F,M,N三点的圆面积最小?最小面积是多少?
图像过原点
我先说1,
1.Y=-3/4X+1 Y=1/4X2(即4分之一x的平方)
2.相切

清楚,F(0,1),做MN的垂直平分线,三角形FMN外接圆的圆心O在直线上,由于平移后的抛物线对称轴为x=2,对称轴交x轴于D,MN=4√(-t),MD=2√(-t)设圆心坐标(2,y),根据OC=ON,√[2^2+(y-1)^2]=√[y^2+(2√(-t))^2],y=5/2-2t,r...