1.平面四边形ABCD,AB=根号3,AD=DC=CB=1,三角形ABD和三角形BCD的面积分别为S和T,则S平方+T平方的最大值是?

问题描述:

1.平面四边形ABCD,AB=根号3,AD=DC=CB=1,三角形ABD和三角形BCD的面积分别为S和T,则S平方+T平方的最大值是?

用余弦定理解
设BD长为x
x^2=AD^2+AB^2-2ABADcosA=BC^2+CD^2-2BCCDcosC
整理得 cosC=√3cosA-1
又s=1/2ABADsinA T=1/2BCCDsinC
S^2+T^2=-3/2cosA^2+√3/2cosA+3/4 最值为5/8