用函数单调性定义证明函数f(x)=x+x分之2在[2,+无穷大)上是增函数
问题描述:
用函数单调性定义证明函数f(x)=x+x分之2在[2,+无穷大)上是增函数
答
设x1>x2>=2
f(x1)-f(x2)=x1+2/x1-x2-2/x2=(x1-x2)+2(x2-x1)/(x1x2)=(x1-x2)*[1-2/x1x2]=(x1-x2)(x1x2-2)/(x1x2)
由于:x1>x2,则x1-x2>0
x1>2,x2>=2,则x1x2>4,即x1x2-2>0,x1x2>0
所以,f(x1)-f(x2)>0
由增函数定义,函数在[2,+无穷)上是增函数.
其实,本题从根号2开始到+无穷就是增的了.