limn→∞(1+1/3)(1+1/3^2)(1+3^4)…(1+3^2^n)rt

问题描述:

limn→∞(1+1/3)(1+1/3^2)(1+3^4)…(1+3^2^n)
rt

ln(1+x) < x 对一切 x> 0 成立84于是:ln((1+1/2)(1+2/4)(1+3/8)(1+4/16)……(1+n/2^n))= ln(1+ 1/2) + ....+ln(1+n/2^n) < 1/2+...+ n/2^n设 A = 1/2+...+ n/2^n32A = 1 + 2/2 + ... + n/2^(n-1)两式相减 得:A = 1 +1/2 + 1/4 + ...+ 1/2^(n-1) - n/2^n= 2 - 1/2^(n-1) - n/2^n< 2所以: ln((1+1/2)(1+2/4)(1+3/8)(1+4/16)……(1+n/2^n)) < 2===> (1+1/2)(1+2/4)(1+3/8)(1+4/16)……(1+n/2^n) < e^2 < 9

limn→∞(1+1/3)(1+1/3^2)(1+1/3^4)…(1+1/3^n)
=(3/2)(1-1/3ⁿ)
=3/2