设f(x)是定义在R上以2为周期的周期函数 且f(x)为偶函数 在区间[2,3] f(x)=-2(x-3)^2+4 求x∈[1,2]时 f(x)的解析式

问题描述:

设f(x)是定义在R上以2为周期的周期函数 且f(x)为偶函数 在区间[2,3] f(x)=-2(x-3)^2+4 求x∈[1,2]时 f(x)的解析式

当x∈[1,2]时,由于f(x)是定义在R上以2为周期的周期函数 且f(x)为偶函数,所以f(x)=f(x-2)=f(2-x)=f(4-x),此时(4-x)∈[2,3],
所以f(x)=f(4-x)=-2(1-x)^2+4=-2x^2+4x+2