1.若a,b,x,y∈R+,且a+b=1,求证:(ax+by)(ay+bx)

问题描述:

1.若a,b,x,y∈R+,且a+b=1,求证:(ax+by)(ay+bx)
≥xy
2.已知a,b,c都是正数,求证:a³
+b³
+c³
≥3abc

1、答:
a+b=1
(a+b)²=1
a²+2ab+b²=1
a²+b²=1-2ab
(ax+by)(ay+bx)
=a²xy+abx²+aby²+b²xy
=ab(x²+y²)+(a²+b²)xy
=ab(x²+y²)+(1-2ab)xy
=ab(x²+y²)-2abxy+xy
=ab(x²-2xy+y²)+xy
=ab(x-y)²+xy
∵a、b∈R+,即ab>0,且(x-y)²≥0
∴ab(x-y)²≥0,即ab(x-y)²+xy≥xy
∴(ax+by)(ay+bx)≥xy
2、答:
证明:a^3+b^3+c^3
=(a+b)(a^2-ab+b^2)+c^3
=(a+b)^3-3ab(a+b)+c^3
=(a+b+c)^3-3c(a+b)(a+b+c)-3ab(a+b)
=(a+b+c)^3-3c(a+b)(a+b+c)-3ab(a+b+c)+3abc
=(a+b+c)[(a+b+c)^2-3c(a+b)-3ab]+3abc
=(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)+3abc
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)+3abc
=0.5(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)+3abc
=0.5(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]+3abc≥3abc
显然当且仅当a=b=c时等号成立.