如图,△ABC中,AD是角平分线,E、F分别为AC、AB上的点,且∠AED+∠AFD=180°.试问:DE与DF有何关系,并说明理由.
问题描述:
如图,△ABC中,AD是角平分线,E、F分别为AC、AB上的点,且∠AED+∠AFD=180°.试问:DE与DF有何关系,并说明理由.
答
DE=DF,
理由是:
过D作DM⊥AB于M,DN⊥AC于N,
∵AD平分∠BAC,
∴DM=DN,∠FMD=∠END=90°,
∵∠AED+∠AFD=180°,∠AED+∠DEN=180°,
∴∠MFD=∠DEN,
在△FMD和△END中
∠MFD=∠DEN ∠FMD=∠END DM=DN
∴△FMD≌△END,
∴DE=DF.