△ABC中,∠B=∠C,D为BC上一点,AB上取BF=CD,AC上取CE=BD,则∠FDE等于(  ) A.90°-∠A B.90°-12∠A C.180°-∠A D.45°-12∠A

问题描述:

△ABC中,∠B=∠C,D为BC上一点,AB上取BF=CD,AC上取CE=BD,则∠FDE等于(  )
A. 90°-∠A
B. 90°-

1
2
∠A
C. 180°-∠A
D. 45°-
1
2
∠A

∵∠B=∠C,BF=CD,CE=BD,
∴△BFD≌△CDE,
∴∠BFD=∠CDE,
∴∠FDE=180°-∠BDF-∠CDE,
=180°-∠BDF-∠BFD,
=∠B,
=

1
2
(180°-∠A),
=90°-
1
2
∠A.
故选B.