△ABC中,∠B=∠C,D为BC上一点,AB上取BF=CD,AC上取CE=BD,则∠FDE等于( ) A.90°-∠A B.90°-12∠A C.180°-∠A D.45°-12∠A
问题描述:
△ABC中,∠B=∠C,D为BC上一点,AB上取BF=CD,AC上取CE=BD,则∠FDE等于( )
A. 90°-∠A
B. 90°-
∠A1 2
C. 180°-∠A
D. 45°-
∠A 1 2
答
∵∠B=∠C,BF=CD,CE=BD,
∴△BFD≌△CDE,
∴∠BFD=∠CDE,
∴∠FDE=180°-∠BDF-∠CDE,
=180°-∠BDF-∠BFD,
=∠B,
=
(180°-∠A),1 2
=90°-
∠A.1 2
故选B.