已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图1,当点D、E分别在AC、AB上时,请判断△BMD的形状.(2)如图2,点D在AB上,连接DM,并延长DM交BC于点N,探究BD与BM的数量关系,并给出证明.(3)如图3,点D不在AB上,(2)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.

问题描述:

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.

(1)如图1,当点D、E分别在AC、AB上时,请判断△BMD的形状.
(2)如图2,点D在AB上,连接DM,并延长DM交BC于点N,探究BD与BM的数量关系,并给出证明.
(3)如图3,点D不在AB上,(2)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.

(1)△BMD是等腰三角形,
理由是:∵∠ABC=∠ADE=90°,
∴∠EDC=90°,
∵点M是CE的中点,
∴BM=

1
2
CE,DM=
1
2
CE,
∴BM=DM,
∴△BMD是等腰三角形;
(2)BD=
2
BM,
证明:∵∠ABC=∠ADE=90°,
∴ED∥BC,
∴∠DEM=∠MCB,
在△EMD和△CMN中
∠DEM=∠NCM
EM=CM
∠EMD=∠NMC

∴△EMD≌△CMN(ASA),
∴CN=DE=DA,MN=MD,
∵BA=BC,
∴BD=BN,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,∠DBM=
1
2
∠DBN=45°=∠BDM,
∴△BMD为等腰直角三角形.
∴BD=
2
BM;

(3)结论成立.
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,
可证得△MDE≌△MFC,
∴DM=FM,DE=FC,
∴AD=ED=FC,
作AN⊥EC于点N,
由已知∠ADE=90°,∠ABC=90°,
可证得∠DEN=∠DAN,∠NAB=∠BCM,
∵CF∥ED,
∴∠DEN=∠FCM,
∴∠BCF=∠BCM+∠FCM=∠NAB+∠DEN=∠NAB+∠DAN=∠BAD,
∴△BCF≌△BAD,
∴BF=BD,∠DBA=∠CBF,
∴∠DBF=∠DBA+∠ABF=∠CBF+∠ABF=∠ABC=90°,
∴△DBF是等腰直角三角形,
∵点M是DF的中点,
则△BMD是等腰直角三角形,
∴BD=
2
BM.
答案解析:(1)根据直角三角形的性质得出BM=DM=
1
2
CE,即可得出答案;
(2)根据等腰直角三角形的性质,根据“直角三角形斜边上的中线等于斜边的一半”可知BD=
2
BM,
(3)先证明△MDE≌△MFC,得出AD=ED=FC,再作AN⊥EC于点N,证出△DBF是等腰直角三角形,根据点M是DF的中点,得出△BMD是等腰直角三角形,即可得出BD=
2
BM.
考试点:全等三角形的判定与性质;等腰直角三角形.
知识点:本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形的性质的应用,在本题中需要作辅助线来证明,难度较大.