已知等差数列{an},a6=5,a3+a8=5.若数列{an}满足bn=a(2n-1),则{bn}的通项公式bn=?

问题描述:

已知等差数列{an},a6=5,a3+a8=5.若数列{an}满足bn=a(2n-1),则{bn}的通项公式bn=?

a3+a8=5,所以a5+a6=5,则a5=0
因此an=5n-25
bn=a(2n-1),只要把n换成2n-1就可以了
即bn=10n-30