如图,在三角形ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF AE=CF,D为BF中点 求AE:AF
问题描述:
如图,在三角形ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF AE=CF,D为BF中点 求AE:AF
答
初中的题?
答
1:1
答
过F做FG‖AB,交CE于G
因为D是BF中点
AE=CF
所以FG/AE=FC/AC=AE/(AE+AF)
即AF/AE=AE/(AE+AF)
AE^2=AEAF+AF^2
(AE/AF)^2-(AE/AF)-1=0
AE/AF=(1+√5)/2