等腰直角三角形ABC中角C等于90度,AC=BC,D为BC的中点,E为斜边AB上的一点,且AE=2EB,CE与AD交于点F,
问题描述:
等腰直角三角形ABC中角C等于90度,AC=BC,D为BC的中点,E为斜边AB上的一点,且AE=2EB,CE与AD交于点F,
连接DE.求1AF\FD等于多少2求证CE垂直于AD3求证角ADC等于角BDE
答
连接BF
1,S(ABF):S(AFC)=BD:DC=1:1 S(ABF)=S(AFC)
S(AFC):S(BFC)=AE:EB=2:1 S(AFC)=2S(BFC) S(ABF)=2S(BFC)
S(BFD):S(BFC)=BD:BC=1:2 S(BFC)=2S(BDF)
S(ABF)=4S(BDF) S(ABF):S(BDF)=4:1=AF:DF
AF/FD=4
2,AD^2=AC^2+CD^2=4CD^2+CD^2=5CD^2
AD=√5CD AF:FD=4:1 FD:AD=1:4
FD=√5CD/5 DF*DA=√5CD*√5CD/5=CD^2
故CF⊥AD,即CE⊥AD.
3,∠AFC=∠ACD=90 ∠CAF=∠DAC △CAF∽△DAC
∠ACF=∠ADC 即∠ACF=∠ADC
BE/AE=1/2 BD/AC=BD/BC=1/2 BE/AE=BD/AC
BE/BD=AE/AC ∠EBD=∠EAC=45
△EBD∽△EAC ∠BDE=∠ACE
∠ADC=∠BDE