已知f(x)=(m-1)x2+mx+1是偶函数,则f(x)在区间[-2,1]上的最大值与最小值的和等于_.
问题描述:
已知f(x)=(m-1)x2+mx+1是偶函数,则f(x)在区间[-2,1]上的最大值与最小值的和等于______.
答
∵f(x)=(m-1)x2+mx+1是偶函数,
∴m=0,
∴f(x)=-x2+1
则f(x)在区间[-2,1]上的最大值与最小值分别为-3和1
则f(x)在区间[-2,1]上的最大值与最小值的和等于-2
故答案为:-2