等边三角形ABC中,点P,Q,R分别在AB,BC,AC上,且PQ⊥BC于Q,QR⊥AC于R,RP⊥AB于P.说明:△PQR是等边三角形

问题描述:

等边三角形ABC中,点P,Q,R分别在AB,BC,AC上,且PQ⊥BC于Q,QR⊥AC于R,RP⊥AB于P.说明:△PQR是等边三角形

因为三角形ABC是等边三角形 所以角A,B,C等于60度,有因为QR垂直AC,所以角qrc=90,又因为角c=60,所以角rqc=30度,又因为pq垂直bc,所以角bqp=90,又因为角pqb+角pqr+jiaorqc=180,所以角PQR=60度,同理 可得角PQR3个角都是60度,所以三角形PQR是等边三角形