已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
问题描述:
已知数列{an}满足a1=1,a2=2,an+2=
,n∈N*.
an+an+1
2
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.
答
(1)证b1=a2-a1=1,
当n≥2时,bn=an+1−an=
−an=−
an−1+an
2
(an−an−1)=−1 2
bn−1,1 2
所以{bn}是以1为首项,−
为公比的等比数列.1 2
(2)解由(1)知bn=an+1−an=(−
)n−1,1 2
当n≥2时,an=a1+(a2-a1)+(a3-a2)++(an-an-1)=1+1+(-
)+…+(−1 2
)n−21 2
=1+
=1+1−(−
)n−1
1 2 1−(−
)1 2
[1−(−2 3
)n−2]=1 2
−5 3
(−2 3
)n−1,1 2
当n=1时,
−5 3
(−2 3
)1−1=1=a1.1 2
所以an=
−5 3
(−2 3
)n−1(n∈N*).1 2