设圆满足:截Y轴所得的弦长为2,被X轴分成两段弧,其弧长之比为3:1,在满足条件的所有圆中,求圆心到直线L:X-2Y=0的距离最小的圆的方程

问题描述:

设圆满足:截Y轴所得的弦长为2,被X轴分成两段弧,其弧长之比为3:1,在满足条件的所有圆中,求圆心到直线L:X-2Y=0的距离最小的圆的方程

当圆的圆心刚好在直线x-2y=0上,那么这个时侯个人认为这个圆就是所求的.具体是,如图的圆心位置,设圆心坐标(a,b),那么,容易求得a=根号3∕3,圆心到直线的距离公式d=|根号3/3-2b|/根号5只有当根号3/3-2b=0时,符合题意,...