正切平方减正弦平方怎么证明等于正切平方乘正弦平方

问题描述:

正切平方减正弦平方怎么证明等于正切平方乘正弦平方

tan^2a-sin^2a=tan^2a*sin^2a左边=sin^2a/cos^2a-sin^2a=sin^2a[(1/cos^2a)-1]=sin^2a[(1-cos^2a)/cos^2a]=sin^2a[sin^2a/cos^2a]=sin^2a*tan^2a=右边tan^2a-sin^2a=tan^2a*sin^2a,成立