设P是抛物线Y^2=4x上的一个动点.求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值

问题描述:

设P是抛物线Y^2=4x上的一个动点.求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值

由y^2=4x=2px,得p=2,p/2=1,所以焦点为F(1,0),准线x=-p/2=-1.过P作PN 垂直直线x=-1,根据抛物线的定义,抛物线上一点到定直线的距离等于到焦点的距离,所以有|PN|=|PF|,连接F、A两点,两点之间线段最短有|FA|≤|PA|+|PF|,...