设随机变量X与Y独立,N(μ1,σ1),N(μ2,σ2),求:随机变量函数Z=XY的数学期望与方差
问题描述:
设随机变量X与Y独立,N(μ1,σ1),N(μ2,σ2),求:随机变量函数Z=XY的数学期望与方差
答
由于X与Y独立,故期望E(Z)=E(XY)=E(X)E(Y)=μ1μ2;
方差D(Z)=D(XY)=E(XY*XY)-E(XY)*E(XY);
E(XY*XY)=E(X^2*Y^2),X^2与Y^2也独立,故E(XY*XY)=E(X^2*Y^2)=E(X^2)*E(Y^2);
E(X^2)=D(X)+E(X)^2=μ1^2+σ1^2,E(Y^2)=D(Y)+E(Y)^2=μ2^2+σ2^2;
E(XY*XY)=E(X^2*Y^2)=E(X^2)*E(Y^2)=μ1^2*σ2^2+μ2^2*σ1^2+μ1^2*μ2^2+σ1^2*σ2^2;
故D(Z)=D(XY)=E(XY*XY)-E(XY)*E(XY)=μ1^2*σ2^2+μ2^2*σ1^2+σ1^2*σ2^2.