函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中mn>0,则1/m+2/n的最小值为_.
问题描述:
函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中mn>0,则
+1 m
的最小值为______. 2 n
答
∵函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,
∴当x=2时,y=1,
∴A(2,1).
又点A在一次函数y=mx+n的图象上,其中mn>0,
∴2m+n=1,又mn>0,
∴m>0,n>0.
∴
+1 m
=(2 n
+1 m
)•(2m+n)=4+2 n
+n m
≥8(当且仅当n=2m=4m n
时取“=”).1 2
故答案为:8.