求证:当n是整数时,n的五次方减n是30的倍数
问题描述:
求证:当n是整数时,n的五次方减n是30的倍数
答
n^5-n=n(n^2+1)(n+1)(n-1)
易得n,(n+1),(n-1)是三个连续的整数,那么三个连续的整数其中有一个被3整除,至少有一个是偶数,即被2整除.
接下来讨论5的情况.
当n的个位数为0,5时,n被5整除,
当n的个位数为4,9时,n+1被5整除
当n的个位数为1,6时,n-1被5整除
当n的个位数为2,3,7,8时(n^2+1)被5整除
综上,无论n取值多少.均能被2,3,5同时整除,即被30整除