已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,且cosBcosC-sinBsinC=1/2,(1)求A

问题描述:

已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,且cosBcosC-sinBsinC=1/2,(1)求A
(2)若a=2根号3,b+c=4,求三角形ABC的面积.

cosBcosC-sinBsinC=1/2
cos(B+C)=1/2
B+C=60°
(1)A=180°-(B+C)=120°
(2)利用余弦定理
a²=b²+c²-2bccosA
12=b²+c²+bc=(b+c)²-bc
12=16-bc
bc=4
所以 三角形ABC的面积=bc*sinA*(1/2)=4*(√3/2)*(1/2)=√3