设函数y=f(x)(x∈R,且x≠o)对任意非零实数x,y,都有f(xy)=f(x)+f(y)成立.判断f(x)的奇偶性
问题描述:
设函数y=f(x)(x∈R,且x≠o)对任意非零实数x,y,都有f(xy)=f(x)+f(y)成立.
判断f(x)的奇偶性
答
f(xy)=f(x)+f(y)
则可知,当令y=-1时
f(-x)=f(x)+f(-1)
而又可知当令x=y=-1时
f(1)=f(-1)+f(-1)
令x=y=1时
f(1)=f(1)+f(1)
故可知,f(1)=0, f(-1)=0
所以f(-x)=f(x)
即f(x)为偶函数