对正数x,y,若x+2y+xy=30,则xy的取值范围是

问题描述:

对正数x,y,若x+2y+xy=30,则xy的取值范围是

30-xy=x+2y≥2√(x*2y)
令a=√xy
则a²+2√2a-30≤0
显然a>0
所以0所以0

x+xy=30-2y
x=(30-2y)/(1+y)
xy=(30y-2y^2)/(1+y)
设1+y=t,y=t-1
xy=[30(t-1)-2(t-1)^2]/t
=(-2t^2+34t-32)/t
=34-2(t+16/t)
因为x\y是正数,1