已知函数f(x)=asin(ωχ+π/3),g(x)=btan(ωχ-π/3)(ω>0)的最小正周期之和为3π/2,且f(π/2)=g(π/2f(π/4)+√3g(π/4)=1,求f(x)g(x)的解析式求f(x)和g(x)的解析式

问题描述:

已知函数f(x)=asin(ωχ+π/3),g(x)=btan(ωχ-π/3)(ω>0)的最小正周期之和为3π/2,且f(π/2)=g(π/2
f(π/4)+√3g(π/4)=1,求f(x)g(x)的解析式
求f(x)和g(x)的解析式

因为f(x)和g(x)的最小正周期之和为3π/2,
所以ω=2
所以f(x)=asin(2χ+π/3),g(x)=btan(2χ-π/3)
因为f(π/2)=g(π/2)代入得a=2b,
因为f(π/4)+√3g(π/4)=1,代入得a+2b=2,
所以a=1,b=1/2
所以f(x)=sin(2χ+π/3),g(x)=0.5tan(2χ-π/3)
所以f(x)g(x)=0.5tan(2χ-π/3)sin(2χ+π/3)

由f(x)和g(x)的最小正周期之和为3π/2得2π/ω +π/ω =3π/2得ω =2由f(π/2)=g(π/2)得-asin(π/3)=-btan(π/3)得a=2bf(x)=2bsin(2χ+π/3),g(x)=btan(2χ-π/3)(ω>0)由f(π/4)+√3g(π/4)=1得2bCosπ/3+√3...