在直角三角形ABC中,D是斜边BC上的一点,AB=AD,∠CAD=α,∠ABC=β, (1)求sinα+cos2β的值; (2)若AC=3DC,求β的值.
问题描述:
在直角三角形ABC中,D是斜边BC上的一点,AB=AD,∠CAD=α,∠ABC=β,
(1)求sinα+cos2β的值;
(2)若AC=
DC,求β的值.
3
答
(1)由180°-2β+α=90°得2β-α=90°,∴sinα+cos2β=sinα+cos(90°+α)=0.…(6分)(2)在△ACD中由正弦定理得,AC:DC=sin(180°-β):sinα,又因为AC=3DC,∴sinβ=3sinα,又∵sinα+cos2β=0,∴2s...