已知方程x²+y²-2(t+3)x+2(1-4t²)y+16t四次方+9=0表示一个圆.求t的取值范围(2)求该圆半径
问题描述:
已知方程x²+y²-2(t+3)x+2(1-4t²)y+16t四次方+9=0表示一个圆.求t的取值范围(2)求该圆半径
答
根据题意得配方得:(x-t-3)^2+(y+1-4t^2)^2 =-(7t+1)(t-1)-(7t+1)(t-1)>0-1/7<t<1配方:[x-(t+3)]^2+[y+(1-4t^2)]^2=(t+3)^2+(1-4t^2)^2-16t^4-9[x-(t+3)]^2+[y+(1-4t^2)]^2=-7t^2+6t+1[x-(t+3)]^2+[y+(1-4t^2)]^2...