已知函数f(x)是区间D属于[0,正无穷大)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x)其中f1(x)是D上的增函数,f2(x)是D上的减函数,且函数f2(x)的至于,A属于[0,正无穷大),则称函数f(x)是区间D上的“偏增函数”1.试说明函数y=sinx+cosx是区间(0,π/4)上的“偏增函数”2.记f1(x)=x3f2(x)=4/x,证明函数f(x)=f1(x)+f2(x)是区间(2,正无穷大)上的偏增函数2.记f1(x)=a√x(a为常数),f2(x)=1/x,若函数f(x)=f1(x)+f2(x)是区间(1,正无穷大)上的“偏增函数”,写出实数a的取值范围(不用写过程)
问题描述:
已知函数f(x)是区间D属于[0,正无穷大)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x)
其中f1(x)是D上的增函数,f2(x)是D上的减函数,且函数f2(x)的至于,A属于[0,正无穷大),则称函数f(x)是区间D上的“偏增函数”
1.试说明函数y=sinx+cosx是区间(0,π/4)上的“偏增函数”
2.记f1(x)=x3f2(x)=4/x,证明函数f(x)=f1(x)+f2(x)是区间(2,正无穷大)上的偏增函数
2.记f1(x)=a√x(a为常数),f2(x)=1/x,若函数f(x)=f1(x)+f2(x)是区间(1,正无穷大)上的“偏增函数”,写出实数a的取值范围(不用写过程)
答
1、y=√2sin(x+π/4),它是区间(0,π/4)上的增函数;sinx是(0,π/4)上的增函数,cosx是区间(0,π/4)上的减函数,并且cosx>0,所以函数y=sinx+cosx是区间(0,π/4)上的“偏增函数”2、f'(x)=3x^2-4/x^2=(3x^4-4)/x...