设常数a≥0,函数f(x)=x-ln2x+2alnx-1 (1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小; (2)求证:f(x)在(0,+∞)上是增函数; (3)求证:当x>1时

问题描述:

设常数a≥0,函数f(x)=x-ln2x+2alnx-1
(1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)求证:当x>1时,恒有x>ln2x-2alnx+1.

(Ⅰ)∵f(x)=x-(lnx)(lnx)+2alnx-1,x∈(0,+∞)
f′(x)=1−[

1
x
×lnx+(lnx)×
1
x
]+
2a
x
,=1−
2lnx
x
+
2a
x
,(2分)
∴g(x)=xf'(x)=x-2lnx+2a,x∈(0,+∞)
g′(x)=1−
2
x
x−2
x
,令g'(x)=0,得x=2,(4分)
列表如下:

∴g(x)在x=2处取得极小值g(2)=2-2ln2+2a,
即g(x)的最小值为g(2)=2-2ln2+2a.(6分)g(2)=2(1-ln2)+2a,
∵ln2<1,∴1-ln2>0,又a≥0,
∴g(2)>0
证明(Ⅱ)由(Ⅰ)知,g(x)的最小值是正数,
∴对一切x∈(0,+∞),恒有g(x)=xf'(x)>0
从而当x>0时,恒有f'(x)>0
故f(x)在(0,+∞)上是增函数
证明(Ⅲ)由(Ⅱ)知:f(x)在(0,+∞)上是增函数,
∴当x>1时,f(x)>f(1)
又f(1)=1-ln21+2aln1-1=0
∴f(x)>0,即x-1-ln2x+2alnx>0
∴x>ln2x-2alnx+1
故当x>1时,恒有x>ln2x-2alnx+1