设常数a≥0,函数f(x)=x-ln2x+2alnx-1 (1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小; (2)求证:f(x)在(0,+∞)上是增函数; (3)求证:当x>1时
问题描述:
设常数a≥0,函数f(x)=x-ln2x+2alnx-1
(1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)求证:当x>1时,恒有x>ln2x-2alnx+1.
答
(Ⅰ)∵f(x)=x-(lnx)(lnx)+2alnx-1,x∈(0,+∞)
∴f′(x)=1−[
×lnx+(lnx)×1 x
]+1 x
,=1−2a x
+2lnx x
,(2分)2a x
∴g(x)=xf'(x)=x-2lnx+2a,x∈(0,+∞)
∴g′(x)=1−
=2 x
,令g'(x)=0,得x=2,(4分)x−2 x
列表如下:
∴g(x)在x=2处取得极小值g(2)=2-2ln2+2a,
即g(x)的最小值为g(2)=2-2ln2+2a.(6分)g(2)=2(1-ln2)+2a,
∵ln2<1,∴1-ln2>0,又a≥0,
∴g(2)>0
证明(Ⅱ)由(Ⅰ)知,g(x)的最小值是正数,
∴对一切x∈(0,+∞),恒有g(x)=xf'(x)>0
从而当x>0时,恒有f'(x)>0
故f(x)在(0,+∞)上是增函数
证明(Ⅲ)由(Ⅱ)知:f(x)在(0,+∞)上是增函数,
∴当x>1时,f(x)>f(1)
又f(1)=1-ln21+2aln1-1=0
∴f(x)>0,即x-1-ln2x+2alnx>0
∴x>ln2x-2alnx+1
故当x>1时,恒有x>ln2x-2alnx+1