答
证明:(1)延长DM,CB交于点E.(如图1)
∵梯形ABCD中,AD∥BC,
∴∠ADM=∠BEM,
∵点M是AB边的中点,
∴AM=BM.
在△ADM与△BEM中,
|
∠ADM=∠BEM |
∠AMD=∠BME |
AM=BM |
|
|
,
∴△ADM≌△BEM.
∴AD=BE=a,DM=EM,
∴CE=CB+BE=b+a.
∵CD=a+b,
∴CE=CD.
∴CM⊥DM.
(2)分别作MN⊥DC,DF⊥BC,垂足分别为点N,F.(如图2)
∵CE=CD,DM=EM,
∴CM平分∠ECD,
∵∠ABC=90°,即MB⊥BC,
∴MN=MB,
∵AD∥BC,∠ABC=90°,
∴∠A=90°,
∵∠DFB=90°,
∴四边形ABFD为矩形,
∴BF=AD=a,AB=DF,
∴FC=BC-BF=b-a,
∵Rt△DFC中,∠DFC=90°,
∴DF2=DC2-FC2=(a+b)2-(b-a)2=4ab,
∴DF=2,
∴MN=MB=AB=DF=,
即点M到CD边的距离为.
答案解析:(1)延长DM,CB交于点E,求出∠ADM=∠BEM,AM=BM证△ADM≌△BEM,推出AD=BE=a,DM=EM,求出CE=DC,即可得出答案;
(2)分别作MN⊥DC,DF⊥BC,垂足分别为点N,F,求出MN=MB,四边形ABFD为矩形.推出BF=AD=a,AB=DF,根据勾股定理得出DF2=DC2-FC2=(a+b)2-(b-a)2=4ab.求出DF=2,代入MN=MB=AB=DF求出即可.
考试点:直角梯形;全等三角形的判定与性质;勾股定理.
知识点:本题主要考查对直角梯形,全等三角形的性质和判定,矩形的性质和判定,等腰三角形的性质,勾股定理,角平分线性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.