圆C:(x-0.5)^2+(y-3)^2=37/4 -m .与直线:x+2y-3=0交于P,Q,向量OP 乘以向量OQ=0求常数m

问题描述:

圆C:(x-0.5)^2+(y-3)^2=37/4 -m .与直线:x+2y-3=0交于P,Q,向量OP 乘以向量OQ=0求常数m

设PQ中点是M(3-2y,y) ,C(0.5,3) , 则 MC⊥PQ,(y-3)/(2.5-2y)=2 , y=1.6, M(-0.2,1.6)
又 OP⊥OQ 所以OM=MP=根号(CP^2-CM^2)
13/5=37/4-m-41/20 m=23/5

联立方程,得
(x-0.5)^2+(y-3)^2=37/4 -m ①
x+2y-3=0 ②
将②代入①,化简得 5x^2+2x-27+4m=0 ③
∵直线与圆交于两点
∴③的△=4-4×5×(-27+4m)>=0
∴m∈(-∞,68]
设P(x1,y1),Q(x2,y2)
根据韦达定理,得 x1x2=(-27+4m)/5 ,x1+x2=-2/5
y1y2=[(3-x1)/2]×[(3-x2)/2]=[9-3(x1+x2)+x1x2]/4
=[9-3×(-2/5)+(-27+4m)/5]/4=(m+6)/5
∵向量OP乘以向量OQ=0
∴x1x1+y1y2=0
即 (-27+4m)/5+(m+6)/5=0
解得 m=21/5
经检验,m=21/5时,③的△>0,满足题意.
所以,常数m的值为21/5.